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Anomalous crossover behavior at finite temperature
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We introduce a stochastic growth model where the growth is controlled by a temperaturelike pafameter
The model shows various types of dynamical behavidF esanges from 0 tee. For T=0 the growth process
belongs to the quenched Kardar-Parisi-Zhd{@Z) universality class, whereas it belongs to the Edwards-
Wilkinson (EW) universality class foll =. In the intermediate range<0T <, the model shows an anoma-
lous crossover behavior from the quenched KPZ to the thermal KPZ class. The KPZ nonlinearity is generated
by an anisotropic effect of the quenched noise which exists onlyTfore in our model. We also study
crossovers between different types of scaling behavior of the interface width for vargus
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Recently the dynamics of driven interfaces in random meHereA(h—h') is assumed to be a monotonically decreasing
dia has attracted much attentiph-3]. The driven motion of  function ofh—h’ for h—h’>0 and decays exponentially to
an interface in a random medium is governed by an interplayero over a finite distanca. The quenched noise term de-
between the quenched disorder of the random medium arstribes a random force which is induced by the quenched
the external driving force acting on the interface. The inter-disorder. Many numerical works have been carried out to
face is pinned when the driving fordeis smaller than the describe and understand the motion of driven interfaces de-
pinning strength induced by the quenched disorder. On thecribed by the QKPZ equation. The roughness exponent
other hand, the interface moves with a constant velocity=0.63 in one dimension was obtained from numerical and
whenF is larger than the pinning strength. Hence, there is analytical studie$7,8]. For A\=0, however, Eq(2) belongs
threshold of the driving forc& . above which the interface to another universality class called the quenched Edwards-
moves with a constant velocity; the velocity is zero for  Wilkinson (QEW) class. Analytica[9] and numerica[10—
<F. and it increases foF>F_.. This phenomenon is re- 13] studies of the QEW class yield a roughness expoaent
ferred to as a pinning-depinning transition. =1~1.25 in one dimension.

Near the depinning threshold, the dynamics of a driven The physical properties of a growing interface in a homo-
interface in a random medium shows a nontrivial scalinggeneous medium are different from those in random media.
behavior of the interface width, In homogeneous media, the dynamics of a growing interface

is influenced by a white noise, which is an uncorrelated ran-
1 _ 1z dom noise with strength dD, instead of a quenched noise.
WL H={— > [h(x,)—h(®)1?) , (1) [Note that Eq(2) becomes the KPZ equati¢i4] when the
L guenched noise is replaced by a white ndisdoreover,
whgreh(x,t) is_the interface height at siteon the_substra_lte \(I:va?lﬁeljj)\tr:se aézsvgrdlzsq\f\i)ll(ﬁl;[‘srgsfllzr:/t\g qudr;t?;?\[ligiaé; (lg?\}[on
at timet. Hereh(t), L, andd denote the mean height at time jng the EW equation directly, one can easily obtain the val-
t, the system size, and the substrate dimension, respectivelyeg of the roughness and dynamic exponents. The values of
The symbol(---) stands for the statistical average overine roughness and dynamic exponents @re(2—d)/2 and
many realizations of randomness. The interface width showg:(z_d)m, respectively. A well-known model belonging
a scaling behaviow~L“f(t/L?), where the scaling function o the EW universality class is the Family mod&s].
f(x) approaches a constant fe>1 and scales as(x) Several years ago, Vergelgk7] studied the competition
~x# for x<1 with z=a/B [4]. The exponents, B, andz  effect between quenched and thermal noise by introducing a
are called the roughness, the growth, and the dynamic exp@emperaturelike parametdr in the Sneppen modgl7] be-
nent, respectively. longing to the QKPZ universality class. In this model, a

The dynamics of a driven interface in a random mediumgrowth process occurs at sifewith a probability propor-
can be explained by a Langevin-type continuum equationgonal to exp—q(x)/T] for 0<T<c, whereq(x) represents
The well-known nonlinear equation describing the motion ofimpurities in random media. The model corresponds to the
a driven interface in random media is the quenched KardarSneppen modél?] for T=0 and the restricted solid-on-solid
Parisi-Zhang QKP2) equation[5,6] (RSOS model[18] belonging to the KPZ universality class
if T=o. For T=o, the growth process occurs with equal
probability at any site so that the growth mechanism is the
same as that of a growing interface in a homogeneous me-
dium. For finiteT, the growing probability at a site having
where F is a driving force. The quenched noise satisfiessmall q(x) becomes larger compared to sites having a large
{n(x,h))=0 and {n(x,h) n(x’,h"))=6x—x")A(h—h").  value ofq(x). Therefore, the effect of quenched noise in

dh(x,t)
at

=vV2h(x,t) +%[Vh(x,t)]2+ F+n(x,h), (2
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FIG. 1. The plots of widthV*(t,T) vs timet are shown for TV FIG. 2. The growth exponenB; starting from the saturated

= 0,2,4,6,8,10, anc from the b°“9m to the top with system interface forT=0. The straight guide line represems~0.64. In
size L=10000. The slopes of the solid, long-dashed, and dotteqhe inset, we obtained the roughness exponend.65

lines are 1.8, 0.62, and 0.5, respectively.

random media can be induced by tuning the temperaturelikéor 1/T=0, 2, 4, 6, 8, 10, aner. The straight guide lines
parametefl. Vergeles, however, found that although thermalrepresen{3=0.25 for the dotted line3=0.31 for the long-
noise and quenched noise coexist in the model ferT0 dashed line, ang3=0.9 for the solid line. ForT==, g
<o, the model belongs to the KPZ universality class. The=~0.25 is the expected value from the Family model, i.e., the
reason is that the effect of thermal noise is more dominant iffW universality class. On the other hand, wher 0, we
interface growth than the effect of the quenched noise wheabtained8~0.9. For finite temperatures, the surface width
the two noises coexist. W(t,T) shows a crossover behavior frotf® to t%3L The

In this paper, we introduce a simple stochastic growthvalue of 3~0.31 is close to the one expected from the KPZ
model where the growth rate is controlled by a temperaturetiniversality class.
like parametefl. The growth rule of the model is the same as  To confirm the universality class of our model in the case
the one in the original Family modg16] which is knownto  T=0, we considered another growth expongatwhen T
belong to the EW universality class wh@n=o. Interest- =0. HereB was measured on the initially saturated inter-
ingly, for T=0 we find that our model doe®tbelong to the face instead of the flat interface. Figure 2 shows the plot of
QEW universality class; instead, it belongs to the QKPZ uni-the interface widthw?(t,0) versus the tim¢. The straight
versality class. The KPZ nonlinearity observed in our modelguide line represent8s~0.64. The value of the growth ex-
originates from an anisotropic effect of the quenched noiseponentfs obtained from the saturated interface is generally
For 0<T<, our model shows a crossover from the QKPZ smaller than that of the growth exponeghtfrom a flat inter-
to the KPZ universality class. This means that thermal noiséace in growth models of driven interface in random media.
is more dominant than quenched noise in our model. Thd&he growth exponent obtained from the saturated interface is
same applies to Vergeles’ model, but in the present case theell known to be the correct growth exponent to classify the
KPZ nonlinearity generated by the anisotropy of theuniversality class. Therefore, the obtained value of the
guenched noise persists without disappearing farme< . growth exponent indicates that our model belongs to the

The stochastic rule of our model is defined as follows:QKPZ universality class. We also measured the roughness
Before the simulation starts, we preassign random numbem@xponenta. As shown in the inset of Fig. 2, the obtained
g(x), representing impurities in the random medium, to allroughness exponent is~0.65. This value is also almost the
perimeter sites of the initially flat interface. During the tem- same as 0.63 expected from the QKPZ class. Thus we con-
poral evolution, a site is selected with a probability propor-clude that our model belongs to the QKPZ universality class
tional to exp—q(x)/T], where 0<T<«, and a particle is whenT=0.
deposited on that site. If the heights of the nearest-neighbor In general, the KPZ nonlinearifyx (Vh)?/2] is known to
sites are lower than that of the selected site, the depositdthve a kinematic origin when the velocityof the growing
particle is allowed to diffuse to the nearest-neighbor site withinterface is nonzero and proportionalXd14]. In the case of
the smaller height. Then the random number at the newlwa driven interface near the depinning threshold, the velocity
occupied site is updated. As already mentioned, the modelf a driven interface is zero or almost zero. However, the
corresponds to the Family model in the EW universalitycritical exponents obtained from experiments and discrete
class afT=oo. models for a driven interface in random media indicate the

Our simulations were carried out starting from a flat ini- existence of a KPZ nonlinearity. Several years ago, Tang,
tial condition with periodic boundary conditions in one di- Kardar, and DarTKD) [6] argued that the anisotropy in
mension. Numerical data were averaged over 100 indepemandom media can be a possible source of the KPZ nonlin-
dent runs. Figure 1 shows the plot of the surface wilftft) earity for driven interfaces in random media. They argued
as a function of the timé using the system size=10000 that the hallmark of the anisotropic depinning is the depen-
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FIG. 3. The plot ofF;(0)—F.(m) vs mis shown for the system 10° 4 1'0 . o'
sizelL=1024. The threshold force linearly depends on the tilt of the 10 0 X 1o 0

interface.
FIG. 4. Data collapse oiV2(t,T) according to Eq(4) for 1/T
dence of the depinning threshafd(m) on the slope of the =2 4, 6, 8, and 10, using~ — 0.4 andA(T)~e'? In(m*-7*
tilted substratem,
whereF (x)—1 for x— andF(x)— xPakez Aoz for x—0.
Fe(m)—F(0)o —|m|YA-a) (3) Here By, and Bqkp, are the growth exponents for the KPZ
and QKPZ universality classes, respectively. Figure 4 shows
where the correlation length parallel to the interface, the collapse of th&(x) versusx. The data are well collapsed

scales ag~(F—F.)” and v is called the correlation length ©Onto a single curve witi\(T)~e'? nm*™ andg~—0.4.
exponent. We also measured the roughness exponent. Figae 5
In order to check whether there is anisotropic depinningshows the plot of the interface widiv?(L,T) versusL for
in our model aff =0, it is necessary to know the exact value 1/T= 2, 4, 6, 8, and 10. The dotted line represents the esti-
of F¢(m) in our model. By measuring the distribution of mate @=0.5 and the solid line represents the estimate
random numbers and the distribution of the minimum ran-=0.65. Thus we find that fof =0 the model belongs to the
dom numbers in the critical statel9], we obtained the QKPZ universality class, while for €T<e, the model
threshold forcer (m) against the tilt of the substrate. We  shows the crossover behavior from the QKPZ to the KPZ
plotted F(m) versus the slopen in a double logarithmic ~ class. The scaling behavior of interface widhf(L,T) sat-
scale in Fig. 3. We found that the data appear as a straigfigfies the following scaling form:
line in the log-log plot. The slope of the line obtained from a
least square fit is 1.470.02. This value is in a fairly good
agreement with the value expected from(I/— «), where
v=1.7 anda=0.63 are the exponents of the QKPZ univer-
sality class. This means that fér=0 anisotropy effects play )
a role in our model and that they generate the KPZ nonlin- =t
earity. For finite T, however, quenched and thermal noise z
coexist in our model. The effect of thermal noise is more
dominant than that of quenched noise in the regime where i i
the quenched and thermal noise coexist. Interestingly, our 10 -
model does not belong to the EW class but belongs the KPZ L
universality class for finitel. The KPZ nonlinearity, which
originates from anisotropic effect of the quenched noise, 10° ¢ ' T
does not disappear and persists even in the presence of ther- : (b)
mal noise in our model. As shown in Fig. 1, there is indeed [
a crossover from the QKPZ to the KPZ class in the model for
0<T<. We considered the crossover scaling behavior of
the interface width for variou$, as will be described in the
following paragraphs. |
The scaling behavior of interface widi?(t,T) changes 102 R
with the variation of a temperaturelike paraméleiWe con- 10
sidered the crossover scaling of the interface width for vari- X
ous T’'s. Our analysis shows that these results are well de- FIG. 5. (a) The plot of widthW3(L,T) vs L is shown for 1T

scribed by =2, 4, 6, 8, and 10 from the bottom to the top. The solid line
representsr~0.65 and the dotted line shows~0.5. (b) Data col-
W2(t,T) = A(T) t% ez F(t exp(—g/T)) (4)  lapse ofW2(L,T) according to Eq(5).
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W2(L,T) ~ B(T) L2%pz G(L exp(—g/T)), (5) the parametel exponentially. We also determined the scal-
ing functions for the interface widti?(t,T) andW?(L,T).

whereG(x)—1 for x—o andG(x)— x“akez” *pz for x—0.  This crossover behavior is anomalous and originates from
Here ayp,, andagp, are the roughness exponents of the KPZthe competition of quenched and thermal noise. When
and QKPZ universality classes, respectively. Figute)5 =0, our model belongs to the EW class, where the KPZ
shows the collapse dB(x) versusx. The data are well col- nonlinearity is absent. For finit€ the KPZ nonlinearity is
lapsed onto a single curve witlB(T)~T % and g @lso generated by the anisotropic effect of the quenched dis-
~—0.27. order. Apparently, the effect of thermal noise is more domi-

In summary, we have studied the generalized Famil;ﬁam in the interface growth than that of the quenched noise
model by introducing a temperaturelike parameteFor T when two noises coexist. However, our model belongs_to the
—c, the growth rule of our model is the same as that of thd<"Z class rather than the EW class for0<ce. This
Family model in the EW universality class, whereas our"€ans that the KPZ nonlinearity by anisotropic effect of the
model belongs to the QKPZ universality class Tor-0. By quenched noise perS|sts without disappearing in the presence
tuning the parametef (and therewith the intensity of the of the thermal noise.
quenched noigewe find that the interface width shows a  This work is supported in part by the Korean Science and
crossover from the QKPZ to the KPZ universality class.Engineering Foundatiof®8-0702-05-01-8and by the Min-
Here the crossover time and the crossover length depend dstry of Education through the BK21 project.
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