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Anomalous crossover behavior at finite temperature
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We introduce a stochastic growth model where the growth is controlled by a temperaturelike parameterT.
The model shows various types of dynamical behavior asT changes from 0 tò . ForT50 the growth process
belongs to the quenched Kardar-Parisi-Zhang~KPZ! universality class, whereas it belongs to the Edwards-
Wilkinson ~EW! universality class forT5`. In the intermediate range 0,T,`, the model shows an anoma-
lous crossover behavior from the quenched KPZ to the thermal KPZ class. The KPZ nonlinearity is generated
by an anisotropic effect of the quenched noise which exists only forT,` in our model. We also study
crossovers between different types of scaling behavior of the interface width for variousT’s.
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Recently the dynamics of driven interfaces in random m
dia has attracted much attention@1–3#. The driven motion of
an interface in a random medium is governed by an interp
between the quenched disorder of the random medium
the external driving force acting on the interface. The int
face is pinned when the driving forceF is smaller than the
pinning strength induced by the quenched disorder. On
other hand, the interface moves with a constant velo
whenF is larger than the pinning strength. Hence, there i
threshold of the driving forceFc above which the interface
moves with a constant velocity; the velocity is zero forF
,Fc and it increases forF.Fc . This phenomenon is re
ferred to as a pinning-depinning transition.

Near the depinning threshold, the dynamics of a driv
interface in a random medium shows a nontrivial scal
behavior of the interface width,

W~L,t ![K 1

Ld (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~1!

whereh(x,t) is the interface height at sitex on the substrate
at timet. Hereh̄(t), L, andd denote the mean height at tim
t, the system size, and the substrate dimension, respecti
The symbol ^•••& stands for the statistical average ov
many realizations of randomness. The interface width sh
a scaling behaviorW;La f (t/Lz), where the scaling function
f (x) approaches a constant forx@1 and scales asf (x)
;xb for x!1 with z5a/b @4#. The exponentsa, b, andz
are called the roughness, the growth, and the dynamic e
nent, respectively.

The dynamics of a driven interface in a random medi
can be explained by a Langevin-type continuum equat
The well-known nonlinear equation describing the motion
a driven interface in random media is the quenched Kard
Parisi-Zhang~QKPZ! equation@5,6#

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21F1h~x,h!, ~2!

where F is a driving force. The quenched noise satisfi
^h(x,h)&50 and ^h(x,h)h(x8,h8)&5dd(x2x8)D(h2h8).
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HereD(h2h8) is assumed to be a monotonically decreas
function ofh2h8 for h2h8.0 and decays exponentially t
zero over a finite distancea. The quenched noise term de
scribes a random force which is induced by the quenc
disorder. Many numerical works have been carried out
describe and understand the motion of driven interfaces
scribed by the QKPZ equation. The roughness exponena
.0.63 in one dimension was obtained from numerical a
analytical studies@7,8#. For l50, however, Eq.~2! belongs
to another universality class called the quenched Edwa
Wilkinson ~QEW! class. Analytical@9# and numerical@10–
13# studies of the QEW class yield a roughness exponena
51;1.25 in one dimension.

The physical properties of a growing interface in a hom
geneous medium are different from those in random me
In homogeneous media, the dynamics of a growing interf
is influenced by a white noise, which is an uncorrelated r
dom noise with strength ofD, instead of a quenched nois
@Note that Eq.~2! becomes the KPZ equation@14# when the
quenched noise is replaced by a white noise.# Moreover,
whenl is also 0, Eq.~2! turns into a simple linear equatio
called the Edwards-Wilkinson~EW! equation@15#. By solv-
ing the EW equation directly, one can easily obtain the v
ues of the roughness and dynamic exponents. The value
the roughness and dynamic exponents area5(22d)/2 and
b5(22d)/4, respectively. A well-known model belongin
to the EW universality class is the Family model@16#.

Several years ago, Vergeles@17# studied the competition
effect between quenched and thermal noise by introducin
temperaturelike parameterT in the Sneppen model@7# be-
longing to the QKPZ universality class. In this model,
growth process occurs at sitex with a probability propor-
tional to exp@2q(x)/T# for 0,T,`, whereq(x) represents
impurities in random media. The model corresponds to
Sneppen model@7# for T50 and the restricted solid-on-soli
~RSOS! model @18# belonging to the KPZ universality clas
if T5`. For T5`, the growth process occurs with equ
probability at any site so that the growth mechanism is
same as that of a growing interface in a homogeneous
dium. For finiteT, the growing probability at a site havin
small q(x) becomes larger compared to sites having a la
value of q(x). Therefore, the effect of quenched noise
©2001 The American Physical Society03-1
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random media can be induced by tuning the temperature
parameterT. Vergeles, however, found that although therm
noise and quenched noise coexist in the model for 0,T
,`, the model belongs to the KPZ universality class. T
reason is that the effect of thermal noise is more dominan
interface growth than the effect of the quenched noise w
the two noises coexist.

In this paper, we introduce a simple stochastic grow
model where the growth rate is controlled by a temperatu
like parameterT. The growth rule of the model is the same
the one in the original Family model@16# which is known to
belong to the EW universality class whenT5`. Interest-
ingly, for T50 we find that our model doesnot belong to the
QEW universality class; instead, it belongs to the QKPZ u
versality class. The KPZ nonlinearity observed in our mo
originates from an anisotropic effect of the quenched no
For 0,T,`, our model shows a crossover from the QKP
to the KPZ universality class. This means that thermal no
is more dominant than quenched noise in our model. T
same applies to Vergeles’ model, but in the present case
KPZ nonlinearity generated by the anisotropy of t
quenched noise persists without disappearing for 0,T,`.

The stochastic rule of our model is defined as follow
Before the simulation starts, we preassign random num
q(x), representing impurities in the random medium, to
perimeter sites of the initially flat interface. During the tem
poral evolution, a site is selected with a probability prop
tional to exp@2q(x)/T#, where 0,T,`, and a particle is
deposited on that site. If the heights of the nearest-neigh
sites are lower than that of the selected site, the depos
particle is allowed to diffuse to the nearest-neighbor site w
the smaller height. Then the random number at the ne
occupied site is updated. As already mentioned, the mo
corresponds to the Family model in the EW universa
class atT5`.

Our simulations were carried out starting from a flat in
tial condition with periodic boundary conditions in one d
mension. Numerical data were averaged over 100 indep
dent runs. Figure 1 shows the plot of the surface widthW2(t)
as a function of the timet using the system sizeL510 000

FIG. 1. The plots of widthW2(t,T) vs timet are shown for 1/T
5 0, 2, 4, 6, 8, 10, and̀ from the bottom to the top with system
size L510 000. The slopes of the solid, long-dashed, and do
lines are 1.8, 0.62, and 0.5, respectively.
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for 1/T50, 2, 4, 6, 8, 10, and̀ . The straight guide lines
representb50.25 for the dotted line,b50.31 for the long-
dashed line, andb50.9 for the solid line. ForT5`, b
'0.25 is the expected value from the Family model, i.e.,
EW universality class. On the other hand, whenT50, we
obtainedb'0.9. For finite temperatures, the surface wid
W(t,T) shows a crossover behavior fromt0.9 to t0.31. The
value ofb'0.31 is close to the one expected from the KP
universality class.

To confirm the universality class of our model in the ca
T50, we considered another growth exponentbs when T
50. Herebs was measured on the initially saturated inte
face instead of the flat interface. Figure 2 shows the plo
the interface widthW2(t,0) versus the timet. The straight
guide line representsbs'0.64. The value of the growth ex
ponentbs obtained from the saturated interface is genera
smaller than that of the growth exponentb from a flat inter-
face in growth models of driven interface in random med
The growth exponent obtained from the saturated interfac
well known to be the correct growth exponent to classify t
universality class. Therefore, the obtained value of
growth exponent indicates that our model belongs to
QKPZ universality class. We also measured the roughn
exponenta. As shown in the inset of Fig. 2, the obtaine
roughness exponent isa'0.65. This value is also almost th
same as 0.63 expected from the QKPZ class. Thus we
clude that our model belongs to the QKPZ universality cla
whenT50.

In general, the KPZ nonlinearity@l(¹h)2/2# is known to
have a kinematic origin when the velocityv of the growing
interface is nonzero and proportional tol @14#. In the case of
a driven interface near the depinning threshold, the velo
of a driven interface is zero or almost zero. However,
critical exponents obtained from experiments and discr
models for a driven interface in random media indicate
existence of a KPZ nonlinearity. Several years ago, Ta
Kardar, and Dar~TKD! @6# argued that the anisotropy i
random media can be a possible source of the KPZ non
earity for driven interfaces in random media. They argu
that the hallmark of the anisotropic depinning is the dep

d

FIG. 2. The growth exponentbs starting from the saturated
interface forT50. The straight guide line representsbs'0.64. In
the inset, we obtained the roughness exponenta'0.65.
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dence of the depinning thresholdFc(m) on the slope of the
tilted substratem,

Fc~m!2Fc~0!}2umu1/n(12a), ~3!

where the correlation length parallel to the interface,j,
scales asj;(F2Fc)

n andn is called the correlation length
exponent.

In order to check whether there is anisotropic depinn
in our model atT50, it is necessary to know the exact valu
of Fc(m) in our model. By measuring the distribution o
random numbers and the distribution of the minimum ra
dom numbers in the critical state@19#, we obtained the
threshold forceFc(m) against the tilt of the substratem. We
plotted Fc(m) versus the slopem in a double logarithmic
scale in Fig. 3. We found that the data appear as a stra
line in the log-log plot. The slope of the line obtained from
least square fit is 1.4760.02. This value is in a fairly good
agreement with the value expected from 1/n(12a), where
n51.7 anda50.63 are the exponents of the QKPZ unive
sality class. This means that forT50 anisotropy effects play
a role in our model and that they generate the KPZ non
earity. For finiteT, however, quenched and thermal noi
coexist in our model. The effect of thermal noise is mo
dominant than that of quenched noise in the regime wh
the quenched and thermal noise coexist. Interestingly,
model does not belong to the EW class but belongs the K
universality class for finiteT. The KPZ nonlinearity, which
originates from anisotropic effect of the quenched noi
does not disappear and persists even in the presence of
mal noise in our model. As shown in Fig. 1, there is inde
a crossover from the QKPZ to the KPZ class in the model
0,T,`. We considered the crossover scaling behavior
the interface width for variousT, as will be described in the
following paragraphs.

The scaling behavior of interface widthW2(t,T) changes
with the variation of a temperaturelike parameterT. We con-
sidered the crossover scaling of the interface width for v
ous T’s. Our analysis shows that these results are well
scribed by

W2~ t,T! 5 A~T! t2bkpz F„t exp~2g/T!… ~4!

FIG. 3. The plot ofFc(0)2Fc(m) vs m is shown for the system
sizeL51024. The threshold force linearly depends on the tilt of
interface.
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whereF(x)→1 for x→` andF(x)→xbqkpz2bkpz for x→0.
Herebkpz andbqkpz are the growth exponents for the KP
and QKPZ universality classes, respectively. Figure 4 sho
the collapse of theF(x) versusx. The data are well collapse
onto a single curve withA(T)'e1.3 ln(1/T)1.74

andg'20.4.
We also measured the roughness exponent. Figure~a!

shows the plot of the interface widthW2(L,T) versusL for
1/T5 2, 4, 6, 8, and 10. The dotted line represents the e
mate a.0.5 and the solid line represents the estimatea
.0.65. Thus we find that forT50 the model belongs to the
QKPZ universality class, while for 0,T,`, the model
shows the crossover behavior from the QKPZ to the K
class. The scaling behavior of interface widthW2(L,T) sat-
isfies the following scaling form:

FIG. 4. Data collapse ofW2(t,T) according to Eq.~4! for 1/T

52, 4, 6, 8, and 10, usingg'20.4 andA(T)'e1.3 ln(1/T)1.74
.

FIG. 5. ~a! The plot of widthW2(L,T) vs L is shown for 1/T
52, 4, 6, 8, and 10 from the bottom to the top. The solid li
representsa'0.65 and the dotted line showsa'0.5. ~b! Data col-
lapse ofW2(L,T) according to Eq.~5!.
3-3



PZ

il

th
u

e
a
s

d

l-

om

PZ

dis-
i-
ise
the

he
ence

nd

HYUN-JOO KIM, KWANGHO PARK, AND IN-MOOK KIM PHYSICAL REVIEW E 64 046103
W2~L,T! ; B~T! L2akpz G„L exp~2g/T!…, ~5!

whereG(x)→1 for x→` andG(x)→xaqkpz2akpz for x→0.
Hereakpz andaqkpz are the roughness exponents of the K
and QKPZ universality classes, respectively. Figure 5~b!
shows the collapse ofG(x) versusx. The data are well col-
lapsed onto a single curve withB(T)'T21.6 and g
'20.27.

In summary, we have studied the generalized Fam
model by introducing a temperaturelike parameterT. For T
5`, the growth rule of our model is the same as that of
Family model in the EW universality class, whereas o
model belongs to the QKPZ universality class forT50. By
tuning the parameterT ~and therewith the intensity of th
quenched noise! we find that the interface width shows
crossover from the QKPZ to the KPZ universality clas
Here the crossover time and the crossover length depen
b,

,

d

.

,
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the parameterT exponentially. We also determined the sca
ing functions for the interface widthW2(t,T) andW2(L,T).
This crossover behavior is anomalous and originates fr
the competition of quenched and thermal noise. WhenT
5`, our model belongs to the EW class, where the K
nonlinearity is absent. For finiteT the KPZ nonlinearity is
also generated by the anisotropic effect of the quenched
order. Apparently, the effect of thermal noise is more dom
nant in the interface growth than that of the quenched no
when two noises coexist. However, our model belongs to
KPZ class rather than the EW class for 0,T,`. This
means that the KPZ nonlinearity by anisotropic effect of t
quenched noise persists without disappearing in the pres
of the thermal noise.
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L. Barábasi and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, Englan
1995!.

@5# L. A. N. Amaral, A.-L. Baraba´si, and H. E. Stanley, Phys. Rev
Lett. 73, 62 ~1994!.

@6# L.-H. Tang, M. Kardar, and D. Dhar, Phys. Rev. Lett.74, 920
~1995!.

@7# K. Sneppen, Phys. Rev. Lett.69, 3539~1992!.
@8# H. Leschhorn, Phys. Rev. E54, 1313~1996!.
@9# T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leshhhorn
,

J.

Phys. II 2, 1483 ~1992!; O. Narayan and D. S. Fisher, Phy
Rev. B48, 7030~1993!.

@10# M. Dong, M. C. Marchetti, A. A. Middleton, and V. Vinokur
Phys. Rev. Lett.70, 662 ~1993!.

@11# H. Leshhorn, Ph. D. thesis, Ruhr University, Bochum, 1994
@12# S. Roux and A. Hansen, J. Phys. I4, 515~1994!; H. J. Jensen,

J. Phys. A28, 1861~1995!; H. A. Makse and L. A. N. Amaral,
Europhys. Lett.31, 379 ~1995!; L. A. N. Amaral, A.-L. Bara-
bási, H. A. Makse, and H. E. Stanley, Phys. Rev. E52, 4087
~1995!.

@13# K. Park and In-mook Kim, Phys. Rev. E59, 5150~1999!.
@14# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,

889 ~1986!.
@15# S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, S

A 381, 17 ~1982!.
@16# F. Family, J. Phys. A19, L441 ~1986!.
@17# M. Vergeles, Phys. Rev. Lett.75, 1969~1995!.
@18# J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett.62, 2289

~1989!.
@19# P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083~1993!.
3-4


